Package: implicitMeasures (via r-universe)

September 8, 2024

Type Package

Title Compute Scores for Different Implicit Measures

Version 0.2.1

Author Ottavia M. Epifania [aut, cre], Pasquale Anselmi [ctb], Egidio Robusto [ctb]

Maintainer Ottavia M. Epifania <otta.epifania@gmail.com>

Description A tool for computing the scores for the Implicit

Association Test (IAT; Greenwald, McGhee & Schwartz (1998) <doi:10.1037/0022-3514.74.6.1464>) and the Single Category-IAT

(SC-IAT: Karpinski & Steinman (2006)

<doi:10.1037/0022-3514.91.1.16>). Functions for preparing the data (both for the IAT and the SC-IAT), plotting the results, and obtaining a table with the scores of implicit measures descriptive statistics are provided.

Depends R (>= 3.5.0)

License MIT + file LICENSE

Encoding UTF-8

LazyData true

RoxygenNote 7.1.1

Imports ggplot2, stringr, tidyr, xtable

Suggests testthat (>= 2.1.0), knitr, rmarkdown, tableHTML, data.table, spelling

VignetteBuilder knitr

Language en-US

Repository https://ottaviae.r-universe.dev

RemoteUrl https://github.com/ottaviae/implicitmeasures

RemoteRef HEAD

RemoteSha 9d5475fc9aff7f9cb5d0774a0f6c1ccfa917fa55

2 clean_iat

Contents

Index		20
	raw_data	19
	multi_dscore	
	multi_dsciat	
	IAT_rel	15
	iatdscores	15
	d_point	13
	d_density	11
	dsciat2	11
	dsciat1	10
	descript_d	9
	compute_sciat	7
	compute_iat	6
	clean_sciat	4
	clean_iat	2

clean_iat

Prepare and clean IAT data.

Description

Select IAT blocks for the *D-score* computation and eventually save demographic data.

```
clean_iat(
  data,
  sbj_id = "participant",
  block_id = "blockcode",
  mapA_practice = "practice_MappingA",
  mapA_test = "test_MappingA",
  mapB_practice = "practice_MappingB",
  mapB_test = "test_MappingB",
  latency_id = "latency",
  accuracy_id = "correct",
  trial_id = NULL,
  trial_eliminate = NULL,
  demo_id = NULL,
  trial_demo = NULL
)
```

clean_iat 3

Arguments

data	Dataframe containing IAT data.			
sbj_id	Column identifying participants' IDs. This variable can be a character, numeric, or factor.			
block_id	String. Column identifying IAT blocks. The block_id variable should be a factor with each level identifying an IAT block.			
mapA_practice	String. Label for the practice blocks of Mapping A (as it appears in the block_id variable).			
mapA_test	String. Label for the test blocks of Mapping A (as it appears in the block_id variable).			
mapB_practice	String. Label for the practice blocks of Mapping B (as it appears in the block_id variable).			
mapB_test	String. Label for the test blocks of Mapping B (as it appears in the block_id variable).			
latency_id	String. Column identifying response times (in millisecond). If the IAT had a built-in correction, latencies of the incorrect responses should be those inflated with the built-in correction.			
accuracy_id	String. Column identifying the IAT accuracy responses. The accuracy_id variable should be a numeric variable identifying the correct responses (with 1) and the incorrect responses (with 0).			
trial_id	Character. Column identifying the trials. Specify this only if you want to delete some specific trials.			
trial_eliminate				
	Character or character vector. Label(s) identifying the trials in trial_id to eliminate.			
demo_id	Character. Column identifying demographic blocks. It can be the same as block_id.			
trial_demo	Character or character vector identifying the name of the blocks in demo_id containing the demographic information.			

Value

List of dataframe.

data_keep Dataframe with class iat_clean. The dataframe contains the data of the blocks specified in mapA_practice, mapA_test, mapB_practice, mapB_test. If you have specified the trials to eliminate through trial_eliminate, data_keep will contain the already cleaned dataset. This dataset should be passed to the computeD function.

data_eliminate Dataframe containing all the discarded blocks and trials.

data_demo Dataframe containing demographic variables. It will be present only if you specified the demo_id and trial_demo arguments.

4 clean_sciat

Examples

```
data("raw_data") # load data
iat_cleandata <- clean_iat(raw_data, sbj_id = "Participant",</pre>
                           block_id = "blockcode",
                           mapA_practice = "practice.iat.Milkbad",
                           mapA_test = "test.iat.Milkbad",
                           mapB_practice = "practice.iat.Milkgood",
                           mapB_test = "test.iat.Milkgood",
                           latency_id = "latency",
                           accuracy_id = "correct",
                           trial_id = "trialcode",
                           trial_eliminate = c("reminder", "reminder1"),
                           demo_id = "blockcode",
                           trial_demo = "demo")
iat_data <- iat_cleandata[[1]] # select the first element of the list (IAT data)</pre>
head(iat_data)
demo_data <- iat_cleandata[[3]] # select the third element of the list</pre>
                             # (demographic data)
head(demo_data)
```

clean_sciat

Prepare and clean SC-IAT data

Description

Select the SC-IAT blocks, for either one or two SC-IATs. Eventually save demographic data.

Usage

```
clean_sciat(
  data,
  sbj_id = "participant",
  block_id = "blockcode",
  accuracy_id = "correct",
  latency_id = "latency",
  block_sciat_1 = NULL,
  block_sciat_2 = NULL,
  trial_id = NULL,
  trial_eliminate = NULL,
  demo_id = NULL,
  trial_demo = NULL
)
```

Arguments

data Dataframe containing SC-IAT data.

sbj_id Column identifying participants' IDs. This variable can be a character, numeric, or factor.

clean_sciat 5

String. Column identifying SC-IAT blocks. The block_id variable should be a

	factor with each level identifying a SC-IAT block.			
accuracy_id	String. Column identifying the IAT accuracy responses. The accuracy_id variable should be a numeric variable identifying the correct responses (with 1) and the incorrect responses (with 0).			
latency_id	String. Column identifying response times (in millisecond).			
block_sciat_1	Character or character vector. Labels identifying the first SC-IAT blocks as they are named in the $block_id$.			
block_sciat_2	Character or character vector. Labels identifying the second (if present) SC-IAT blocks as they are named in the block_id.			
trial_id	Character. Column identifying the trials. Specify this only if you want to delete some specific trials. If a response window was used for the SC-IAT administration the label of the non-response must be included in this variable.			
trial_eliminate				
	Character or character vector. Labels of the trials to eliminate in the trial_id to eliminate (NOTE: don't use this command to delete the responses exceeding the response time window).			
demo_id	Character. Character. Column identifying demographic blocks. It can be the same as $block_id$.			
trial_demo	Character or character vector identifying the name of the blocks in $demo_id$ containing the demographic information.			

Value

List of dataframe.

block_id

sciat1 Data frame with class sciat_clean containing the data of the first SC-IAT as specified block_sciat_1. If any labels was specified in trial_eliminate, data_keep will contain the already cleaned dataset.

sciat2 Data frame with class sciat_clean containing the data of the second (if any) SC-IAT as specified through block_sciat_2. If any labels was specified in trial_eliminate, data_keep will contain the already cleaned dataset.

data_demo Data frame. Present only when variable_demo and trial_demo arguments are specified.

6 compute_iat

compute_iat

Compute IAT D-score

Description

Compute *D-score* for the IAT according to different algorithms.

Usage

```
compute_iat(data, Dscore = c("d1", "d2", "d3", "d4", "d5", "d6"))
```

Arguments

data Dataframe with class iat_clean.

Dscore Character. Indicates which *D-score* to compute. For details on the algorithms,

please refer to Greenwald et al. (2003).

Value

Dataframe with class "dscore". The number of rows of the dataframe corresponds to the total number of participants. Variables are defined as follows (the values are specific for each participant):

participant Respondents' IDs.

n_trial Number of trails before data cleaning.

nslow10000 Number of slow trials (> 10,000 ms).

nfast400 Number of fast trials (< 400 ms).

nfast300 Number of fast trials (< 300 ms).

accuracy.practice_MappingA Proportion of correct responses in practice block of Mapping A.

accuracy.practice_MappingB Proportion of correct responses in practice block of Mapping B.

accuracy.test_MappingA Proportion of correct responses in test block of Mapping A.

accuracy.test_MappingB Proportion of correct responses in test block of Mapping B.

accuracy. Mapping A Proportion of correct responses in Mapping A.

accuracy. MappingB Proportion of correct responses in Mapping B.

RT_mean.MappingA Mean response time in Mapping A.

RT_mean.MappingB Mean response time in Mapping B.

mean_practice_MappingA Mean response time in practice block of Mapping A.

mean_practice_MappingB Mean response time in practice block of Mapping B.

mean_test_MappingA Mean response time in test block of Mapping A.

compute_sciat 7

mean_test_MappingB Mean response time in test block of Mapping B.

d_practice_dX *D-scores* compute_iat on the practice blocks. The X stands for the selected *D-score* procedure.

d_test_dX D-scores compute_iat on the test blocks. The X stands for the selected D-score procedure.

dscore_dX The average *D-score* for the practice and test *D-score*s. The X stands for the selected *D-score* procedure.

cond_ord Indicates the order with which the associative conditions have been presented, either "MappingA_First" or "MappingB_First".

legendMappingA Indicates the corresponding value of Mapping A in the original dataset.

legendMappingB Indicates the corresponding value of Mapping B in the original dataset.

Examples

```
# compute D-score 2 for the IAT data ###
 data("raw_data") # import data
 iat_cleandata <- clean_iat(raw_data, sbj_id = "Participant",</pre>
                          block_id = "blockcode",
                          mapA_practice = "practice.iat.Milkbad",
                          mapA_test = "test.iat.Milkbad",
                          mapB_practice = "practice.iat.Milkgood",
                           mapB_test = "test.iat.Milkgood",
                           latency_id = "latency",
                           accuracy_id = "correct",
                           trial_id = "trialcode",
                           trial_eliminate = c("reminder", "reminder1"),
                           demo_id = "blockcode",
                           trial_demo = "demo")
 iat_data <- iat_cleandata[[1]]</pre>
# calculate D-score
 iat_dscore <- compute_iat(iat_data,</pre>
                         Dscore = "d2")
```

compute_sciat

Compute the D-score for the SC-IAT

Description

Compute the D-score for the SC-IAT.

```
compute_sciat(
  data,
  mappingA = "mappingA",
  mappingB = "mappingB",
  non_response = NULL
)
```

8 compute_sciat

Arguments

data Data frame with class clean_sciat.

mappingA String. Label identifying the mapping A of the SC-IAT in the block_id vari-

able.

mappingB String. Label identifying the mapping B of the SC-IAT in the block_id variable.

non_response String. Labels of the trials identifying the non-responses, a.k.a responses beyond

the response time window, as it was specified in trial_id (if included).

Value

A dataframe with class compute_sciat. The number of rows of the dataframe corresponds to the total number of participants. Variables are defined as follows (the values are specific for each participant):

participant Respondents' IDs.

n_trial Number of trial before data cleaning.

no_response If there were any trials identifying the non response, it indicates the number of non responses per each participant. Otherwise, it is equal for all participants ("none").

nslow10000 Number of slow trials (> 10,000 ms).

out_accuracy Indicates whether the participants had more than 25 % of incorrect responses in at least one of the critical blocks and hence should be eliminated ("out") or not ("keep").

nfast400 Number of fast trials (< 400 ms).

nfast300 Number of fast trials (< 350 ms - deleted).

accuracy.mappingA Proportion of correct responses in Mapping A.

accuracy.mappingB Proportion of correct responses in mapping B.

RT_mean.MappingA Mean response time in Mapping A.

RT_mean.MappingB Mean response time in Mapping B.

cond_ord Indicates the order with which the associative conditions have been presented, either "MappingA_First" or "MappingB_First".

legendMappingA Indicates the corresponding value of Mapping A in the original dataset.

legendMappingB Indicates the corresponding value of Mapping B in the original dataset.

d_sciat SC-IAT D.

descript_d 9

```
"test.sc_milk.Milkgood"),
                         trial_id = "trialcode",
                         trial_eliminate = c("reminder",
                                               "reminder1"))
sciat1 <- sciat_data[[1]] # compute D for the first SC-IAT</pre>
d_sciat1 <- compute_sciat(sciat1,</pre>
                   mappingA = "test.sc_dark.Darkbad",
                   mappingB = "test.sc_dark.Darkgood",
                   non_response = "alert")
head(d_sciat1) # dataframe containing the SC-IAT D of the of the
                # first SC-IAT
sciat2 <- sciat_data[[2]] # Compute D for the second SC-IAT</pre>
d_sciat2 <- compute_sciat(sciat2,</pre>
                   mappingA = "test.sc_milk.Milkbad",
                   mappingB = "test.sc_milk.Milkgood",
                   non_response = "alert")
head(d_sciat2)
```

descript_d

Descriptive table of either the IAT D-score or the SC-IAT Ds

Description

Descriptive statistics for the IAT *D-score* or the SC-IAT *D*.

Usage

```
descript_d(data, latex = FALSE)
```

Arguments

data Dataframe with either class dscore or class dsciat.

latex Logical. If TRUE, the table for the descriptive statistics will be printed in latex

format. Default is FALSE.

Value

Dataframe, containing the mean, s.d., minimum and maximum of the IAT (D-score, D-practice, and D-test) or the SC-IAT (D-Sciat, RT.MappingA, RT.MappingB).

10 dsciat1

```
mapB_practice = "practice.iat.Milkgood",
                           mapB_test = "test.iat.Milkgood",
                           latency_id = "latency",
                           accuracy_id = "correct",
                           trial_id = "trialcode",
                           trial_eliminate = c("reminder", "reminder1"),
                           demo_id = "blockcode",
                           trial_demo = "demo")
 iat_data <- iat_cleandata[[1]]</pre>
# calculate D-score
 iat_dscore <- compute_iat(iat_data,</pre>
                          Dscore = "d2")
 descript_d(iat_dscore) # descriptive statistics for the IAT
# calculate D for the SCIAT
 data("raw_data") # load data
sciat_data <- clean_sciat(raw_data, sbj_id = "Participant",</pre>
                         block_id = "blockcode",
                         latency_id = "latency",
                          accuracy_id = "correct",
                         block_sciat_1 = c("test.sc_dark.Darkbad",
                                            "test.sc_dark.Darkgood"),
                          block_sciat_2 = c("test.sc_milk.Milkbad",
                                            "test.sc_milk.Milkgood"),
                          trial_id = "trialcode",
                         trial_eliminate = c("reminder",
                                               "reminder1"))
sciat1 <- sciat_data[[1]] # compute D for the first SC-IAT</pre>
d_sciat1 <- compute_sciat(sciat1,</pre>
                    mappingA = "test.sc_dark.Darkbad",
                    mappingB = "test.sc_dark.Darkgood",
                    non_response = "alert")
 descript_d(d_sciat1,
             latex = TRUE) # descriptive statistics for the SC-IAT in latex
                           # format
```

dsciat1

Data set with SC-IAT D-scores (Dark)

Description

A data set containing the results of the computation of the D-score on the Dark SC-IAT data set. This data set is used for testing the replicability of the results obtained with the compute_sciat() functions.

```
data("dsciat1")
```

dsciat2

Format

A dataframe with 15 variables, as those described in the documentation for the compute_sciat() function.

dsciat2

Data set with SC-IAT D-scores (Milk)

Description

A data set containing the results of the computation of the D-score on the Dark SC-IAT data set. This data set is used for testing the replicability of the results obtained with the compute_sciat() functions.

Usage

```
data("dsciat2")
```

Format

A dataframe with 15 variables, as those described in the documentation for the compute_sciat() function.

d_density

Plot IAT or SC-IAT scores (distribution)

Description

Plot the distribution of the IAT *D-score* or the SC-IAT *D*.

```
d_density(
  data,
  graph = c("histogram", "density", "violin"),
  n_bin = 80,
  col_fill = "royalblue",
  col_point = "red",
  include_stats = FALSE
)
```

12 d_density

Arguments

data Dataframe with either class dscore or dsciat. String. Indicates the graphs to display. Default is histogram graph Numeric. Indicates the number of bins to display. n_bin col_fill String. Indicates the color for filling the bars of the histogram or the curve of the density. Default is royalblue. String. Indicates the color for the individual scores –each point – in the violin col_point plot. Default is red. include_stats Logical. Indicates whether to add descriptive statistics. The mean is depicted with a solid line. The two dashed lines represent +/-2 s.d. from the mean. Default is FALSE.

Value

A ggplot object.

```
# Plotting the IAT D-score
 data("raw_data") # import data
 iat_cleandata <- clean_iat(raw_data, sbj_id = "Participant",</pre>
                          block_id = "blockcode",
                          mapA_practice = "practice.iat.Milkbad",
                          mapA_test = "test.iat.Milkbad",
                          mapB_practice = "practice.iat.Milkgood",
                          mapB_test = "test.iat.Milkgood",
                          latency_id = "latency",
                          accuracy_id = "correct",
                          trial_id = "trialcode",
                          trial_eliminate = c("reminder", "reminder1"),
                          demo_id = "blockcode",
                          trial_demo = "demo")
 iat_data <- iat_cleandata[[1]]</pre>
# calculate D-score
 iat_dscore <- compute_iat(iat_data,</pre>
                       Dscore = "d2")
 d_density(iat_dscore) # Default graph
 d_density(iat_dscore, graph = "histogram",
          n_bin = 30) # Histogram with a different number of bins
 d_density(iat_dscore, graph = "density") # IAT D-score density plot
 d_density(iat_dscore, graph = "violin") # IAT D-score violin plot
 # Plot the SC-IAT D for the first SC-IAT
 data("raw_data") # load data
 sciat_data <- clean_sciat(raw_data, sbj_id = "Participant",</pre>
                         block_id = "blockcode",
                         latency_id = "latency",
                         accuracy_id = "correct",
                         block_sciat_1 = c("test.sc_dark.Darkbad",
                                            "test.sc_dark.Darkgood"),
```

d_point

d_point

Plot either IAT or SC-IAT scores (points)

Description

Plot the individual *D-score* or SC-IAT *D*.

Usage

```
d_point(
  data,
  point_size = 1,
  x_label = "Participant",
  x_values = TRUE,
  order_sbj = c("default", "D-increasing", "D-decreasing"),
  col_point = "springgreen4",
  include_stats = FALSE
)
```

Arguments

data	Dataframe with either class dscore or dsciat.
point_size	Numeric. Indicates the size of the points in the graph. Default is 1.
x_label	Character. Label of the x-axis. Default is Participant.
x_values	Logical. Shows the values for x-axis (default = $TRUE$).
order_sbj	Character. Defines the order with which the participants are displayed. Default is the default order of participants in the dataframe.
col_point	Character. Defines the color of the points. Default is "springgreen4".
include_stats	Logical. Indicates whether to add descriptive statistics. The mean is depicted with a solid line. The two dashed lines represent $\pm 1/2$ s.d. from the mean. Default is FALSE.

Value

A ggplot object

```
# Plotting the IAT D-score
 data("raw_data") # import data
 iat_cleandata <- clean_iat(raw_data, sbj_id = "Participant",</pre>
                          block_id = "blockcode",
                          mapA_practice = "practice.iat.Milkbad",
                          mapA_test = "test.iat.Milkbad",
                          mapB_practice = "practice.iat.Milkgood",
                          mapB_test = "test.iat.Milkgood",
                          latency_id = "latency",
                          accuracy_id = "correct",
                          trial_id = "trialcode",
                          trial_eliminate = c("reminder", "reminder1"),
                          demo_id = "blockcode",
                          trial_demo = "demo")
 iat_data <- iat_cleandata[[1]]</pre>
# calculate D-score
 iat_dscore <- compute_iat(iat_data,</pre>
                       Dscore = "d2")
 d_point(iat_dscore) # default plot
 d_point(iat_dscore, order_sbj = "D-increasing") # D-score with increasing
 d_point(iat_dscore, order_sbj = "D-decreasing",
         col_point = "salmon") # D-score with decreasing order changed color
# Plot the SC-IAT D for the first SC-IAT
 data("raw_data") # load data
 sciat_data <- clean_sciat(raw_data, sbj_id = "Participant",</pre>
                         block_id = "blockcode",
                         latency_id = "latency",
                         accuracy_id = "correct",
                         block_sciat_1 = c("test.sc_dark.Darkbad",
                                            "test.sc_dark.Darkgood"),
                         block_sciat_2 = c("test.sc_milk.Milkbad",
                                            "test.sc_milk.Milkgood"),
                         trial_id = "trialcode",
                         trial_eliminate = c("reminder",
                                              "reminder1"))
sciat1 <- sciat_data[[1]] # compute D for the first SC-IAT</pre>
d_sciat1 <- compute_sciat(sciat1,</pre>
                  mappingA = "test.sc_dark.Darkbad",
                  mappingB = "test.sc_dark.Darkgood",
                  non_response = "alert")
 d_point(d_sciat1, col_point = "salmon",
          include_stats = TRUE) # SC-IAT D with descriptive statistics
```

iatdscores 15

iatdscores

Data set with IAT D-scores

Description

A data set containing the results for all the possible D-score algorithms for the IAT. All the algorithms are identified by their corresponding label (such as "dscore_d1"). This data set is used for testing the replicability of the results of the compute_iat() function over time.

Usage

```
data("iatdscores")
```

Format

A dataframe with 7 variables, the first one contains the respondents' id, the other 6 columns contain a specific D-score algorithm.

IAT_rel

IAT reliability

Description

Compute the practice – test IAT reliability.

Usage

```
IAT_rel(data)
```

Arguments

data

dataframe with class "dscore" (Gawronski et al., 2017).

Value

List of two objects:

Test-practice reliability contains the IAT reliability.

Number of Participants Contains the number of participants on which the reliability was computed.

multi_dsciat

Examples

```
# compute D-score 2 for the IAT data ###
 data("raw_data") # import data
 iat_cleandata <- clean_iat(raw_data, sbj_id = "Participant",</pre>
                          block_id = "blockcode",
                          mapA_practice = "practice.iat.Milkbad",
                          mapA_test = "test.iat.Milkbad",
                          mapB_practice = "practice.iat.Milkgood",
                          mapB_test = "test.iat.Milkgood",
                           latency_id = "latency",
                           accuracy_id = "correct",
                           trial_id = "trialcode",
                           trial_eliminate = c("reminder", "reminder1"),
                           demo_id = "blockcode",
                           trial_demo = "demo")
 iat_data <- iat_cleandata[[1]]</pre>
# calculate D-score
 iat_dscore <- compute_iat(iat_data,</pre>
                         Dscore = "d2")
 IAT_rel(iat_dscore)
```

multi_dsciat

Plot SC-IATs scores

Description

Plot the scores from two different SC-IATs.

Usage

```
multi_dsciat(
    sciat1,
    sciat2,
    graph = c("density", "violin", "point"),
    x_values = TRUE,
    gcolors = c("dark", "greens", "blues", "pinks"),
    label_sc1 = "SC-IAT1",
    label_sc2 = "SC-IAT2",
    label_y = "SC-IAT scores",
    dens_mean = TRUE
)
```

Arguments

sciat1 Dataframe with class dsciat. Contains the *D* for the first SC-IAT.
sciat2 Dataframe with class dsciat. Contains the *D* for the second SC-IAT.
graph String. Type of graph to display. Default is density.

multi_dscore 17

x_values	Logical. Shows the values for x-axis (default = $TRUE$). Only for the point graph.
gcolors	String. Colors palette for plotting the results. Default is dark.
label_sc1	String. Label to display in the graph for the first SC-IAT. Default is SC-IAT1.
label_sc2	String. Label to display in the graph for the first SC-IAT. Default is SC-IAT2.
label_y	String. Label to plot on the y-axis.
dens_mean	Logical. Whether to include the mean in the density plot. Default is TRUE.

Value

A ggplot object

Examples

```
# calculate D for the SCIAT
 data("raw_data") # load data
sciat_data <- clean_sciat(raw_data, sbj_id = "Participant",</pre>
                         block_id = "blockcode",
                          latency_id = "latency",
                          accuracy_id = "correct",
                          block_sciat_1 = c("test.sc_dark.Darkbad",
                                            "test.sc_dark.Darkgood"),
                          block_sciat_2 = c("test.sc_milk.Milkbad",
                                             "test.sc_milk.Milkgood"),
                          trial_id = "trialcode",
                          trial_eliminate = c("reminder",
                                               "reminder1"))
 sciat1 <- sciat_data[[1]] # compute D for the first SC-IAT</pre>
 d_sciat1 <- compute_sciat(sciat1,</pre>
                    mappingA = "test.sc_dark.Darkbad",
                    mappingB = "test.sc_dark.Darkgood",
                    non_response = "alert") # dataframe with the first D
                                              # SC-IAT
 sciat2 <- sciat_data[[2]] # Compute D for the second SC-IAT</pre>
 d_sciat2 <- compute_sciat(sciat2,</pre>
                    mappingA = "test.sc_milk.Milkbad",
                    mappingB = "test.sc_milk.Milkgood",
                    non_response = "alert") # dataframe with the first
                                              # D SC-IAT
multi_dsciat(d_sciat1, d_sciat2) # plot the D of two SC-IATs with default
                                     # settings
```

multi_dscore

Compute and plot multiple D-scores

Description

Compute and plot multiple *D-scores*.

18 multi_dscore

Usage

```
multi_dscore(data, ds = c("built-in", "error-inflation"))
```

Arguments

data Dataframe of class iat_clean.

ds String. Indicates which D-score to compute. built-in compute only *D-score*

with the built-in error correction (D1 and D2), error-inflation compute the

D-scores without built-in correction (D3 to D6).

Value

A list. The first object is a dataframe containing all the computed Dscores. The second object is a ggplot object, depicting the distribution of the *D-scores* through violin plots.

@import tidyr

```
# Compute multiple IAT D-scores
data("raw_data") # import data
iat_cleandata <- clean_iat(raw_data, sbj_id = "Participant",</pre>
                          block_id = "blockcode",
                          mapA_practice = "practice.iat.Milkbad",
                          mapA_test = "test.iat.Milkbad",
                          mapB_practice = "practice.iat.Milkgood",
                          mapB_test = "test.iat.Milkgood",
                          latency_id = "latency",
                          accuracy_id = "correct",
                           trial_id = "trialcode",
                           trial_eliminate = c("reminder", "reminder1"),
                           demo_id = "blockcode",
                           trial_demo = "demo")
iat_data <- iat_cleandata[[1]]</pre>
\ensuremath{\text{\#}} compute the mulitple scores and prepare the graphs for the built-in
# strategies
multiple_scores <- multi_dscore(iat_data, ds = "built-in")</pre>
data_multiple <- multiple_scores$dscores # store the D-score in a dataframe</pre>
# plot the results
multiple_scores$graph
```

raw_data 19

raw_data

Dataset with one IAT and two SC-IATs

Description

A dataset containing the data from 152 participants who completed one IAT and two SC-IATs. The object of both the implicit measures was chocolate, either Milk or Dark chocolate:

Usage

data(raw_data)

Format

A dataframe with 6 variables, as follows:

- Participant. Participants ID.
- latency. Latency of the response times in millisecond.
- correct. Response accuracy (0–correct, 1–error).
- trialcode. Factor with 32 levels identifying the trial for each response, both for the implicit measures and the demographic questionnaire. It contains also the trials that have to be eliminated, defined as follows:
 - alert. Defines the SC-IAT trials beyond the response time window.
 - Reminder, Reminder1. Identify the instruction page.
- blockcode. Factor with 13 levels as follow:
 - practice.iat.Milkbad. IAT practice blocks, Mapping A.
 - practice.iat.Milkbad. IAT practice blocks, Mapping B.
 - practice.sc_dark.Darkbad. Dark SC-IAT practice blocks, Mapping A.
 - practice.sc_dark.Darkbad. Dark SC-IAT practice blocks, Mapping B.
 - practice.sc_milk.Milkbad. Milk SC-IAT practice blocks, Mapping A.
 - practice.sc_milk.Milkgood. Milk SC-IAT practice blocks, Mapping B.
 - test.iat.Milkbad. IAT test blocks, Mapping A.
 - test.iat.Milkgood. IAT test blocks, Mapping B.
 - test.sc_dark.Darkbad. Dark SC_IAT test blocks, Mapping A.
 - test.sc_dark.Darkbad. Dark SC-IAT test blocks, Mapping B.
 - test.sc_milk.Milkbad. Milk SC-IAT test blocks, Mapping A.
 - test.sc_milk.Milkgood. Milk SC-IAT test blocks, Mapping B.
 - demo. Demographic questionnaire.
- response. Character registering the type of response for the demographic .

Index

```
\ast datasets
    dsciat1, 10
     dsciat2, 11
     iatdscores, 15
     raw_data, 19
clean_iat, 2
{\tt clean\_sciat}, {\tt 4}
compute_iat, 6
compute_sciat, 7
d_density, 11
d_point, 13
descript_d, 9
dsciat1, 10
dsciat2, 11
IAT_rel, 15
iatdscores, 15
\verb|multi_dsciat|, \\ 16
\verb|multi_dscore|, 17|\\
raw_data, 19
```